Combining tCS and EEG
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e Measuring tCS effects with EEG

> Measuring effects outside the motor cortex

> Measuring focality of tCS interventions

e Basics of EEG

> EEG signal: features and opportunities
> Analysis (ERP,Power, ...)

> Experimental example of EEG-tCS combination

e Beyond EEG

> TMS-EEG recording



Corticospinal excitability as an index of Brain excitability

Applied to tCS: limitation for online recording, only after effects

Transcranial Magnetic Stimulation
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Measuring tCS effects without EEG

MEF size aftar curmant stmulation J basalrs

Time {min]

First evidence of tDCS after effect from Nitsche and Paulus, 2000

Changes in cortical excitability assessed using TMS-EMG
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corticospinal excitability

tDCS Effects on the motor cortex: pre/during/post
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Anodal and Cathodal
tDCS modulate
(increase/decrease
excitability) right after
the stimulation respect
to Sham.

No significant effects
During the stimulation.

Still limited to
the motor
cortex!




Are we stimulating the motor cortex?

Kuo et al., 2013
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Montage, Timing, Stimulation site,
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complex scenario underlying tCS
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Multifactorial model

Brain state
(electrophysiological
recording - EEG)

Behavioural scores

Individual trait Electrophysiological

(personality, cognitive responses —
profile) EEG/ERPs/etc..
Genetics Behavioural performance o
(e.g. BDNF) Physiological measurements (EKG, Neuroimaging (359)
EDR,..)
EEG/ERPs/???
fMRI?

>
DURING R




Where to stimulate? When to stimulate?

Determine target site &
device position/orientation

for stimulation based on... for stimulation based on...

induced power

latency of evoked responses

A

oscillatory phase

A

oscillatory power

source localization

individual gyral anatomy
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occurrence of specific events

Determine target onset/time window
relative to task or spontaneous event

Targeting Optimization

How to stimulate?

Determine specfic parameters
for stimulation such as...
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Open questions..

- the effect of tCS on Non-Motor regions?

e distant effects and changes in the interplay between regions
(connectivity) 2 Network effects?

- 8
2

e the Online effects of tCS on brain activity other than
“excitability”?

Useful information to define tCS parameters
and increase efficacy of interventions



Electroencephalography

1875: Richard Caton (1842-1926) measured currents in between the cortical
surface and the skull, in dogs and monkeys

1929: Hans Berger (1873-1941) first EEG in humans (his young son), description of
alpha and beta waves

1950s. Grey Walter ( 1910 — 1977). Invention of topographic
EEG maps.




Electroencephalography

Where does the signal come from?

Signals stem from synchronous activity of large (~1000s)
groups of neurons close to each other and exhibiting similar ——=
patterns of activity |

*Most of the signal generated by pyramidal neurons in the
cortex (parallel to each other, oriented perpendicular to the
surface)

EXCITATORY SYNAPSE

*EEG measures synaptic currents, not action potentials
(currents flow in opposite directions and cancel out!)

electric ~—, \Mmagnetic
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Electroencephalography

Primary intracellular currents give rise to volume
currents and a magnetic field

Magnetic field
MEG pick-up coils 1
—a P p- | | Current
¥ > \— Electrical potential
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Volume currents yield potential differences on
the scalp that can be measured by EEG




Pros and cons of EEG
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EEG recording and analysis



EEG recording

 |nternational 10-20 system

e Left side: odd numbers High-Density EEG
(64-256 Channels)

* Right side: even numbers

e Numbers increase from the hemispheric line towards the edges. Letter
indicates brain regions (lobes).
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EEG recording

® EEG records potential differences at the scalp using a set of
active electrodes and a reference

® The ground electrode Is Important to eliminate noise from the
amplifier circuit
® Potential differences are then amplified

e The representation of the EEG
channels is referred to as a montage

—Unipolar/Referential = potential
difference between electrode and
designated reference

— Bipolar = represents difference

between adjacent electrodes (e.g.
ECG, EOQG)




EEG recording

1. SPONTANEOUS  ~n ~/\ AN/

 Meaningful data with ~5’ of recording
e Eyes open/closed

2. EVOKED

—

Trial 1

@
8
£

Trial 2

=
C:

Trial N

%

Well known Evoked Response
Potential (ERP )(P300, N100, ..)

TMS-EEG



EEG analysis
From ERPs to Waveform P3
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Amplitude (or Power)

Strength
(uV or u\=)

Frequency

# of Cycles/Second
(Hz)

Phase
(Radians)

V()=3 Ansin(21fat—gn)




Time domain Analysis

Event Relate Potentials
ERPsS Vi

Preattentive
Responses

l- {

Auditory
Nerves
I-VII

Advantages: computationally simple

Example of auditory evoked potentials

Cognitive Responses

P300

Slow Wave




Frequency Domain Analysis (EEG)

How to disentangle oscillations
Jean Joseph Fourier (1768—1830):

“An arbitrary function, continuous or with discontinuities, de

ned in a finite interval by an arbitrarily capricious graph can
always be expressed as a sum of sinusoids”.
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Time- Frequency Domain Analysis (EEG)

+3

40; o

M

=

E

30; =

=4y
= I
*-._.-'2 L =
o 2
5 L5
%1 - >
i3 -3




Connectivity Analysis (EEG)

Connectivity based on...

.Phase (eg. phase-slope index)
.Power (eg. coherence)

.Cross-frequency coupling
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Connectivity Analysis (EEG)

two bars approached, briefly .
ambiguous audiovisual stimulus: overlapped while a click sound was played, and moved apart Hi PP et al . 2013
from each other
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-760 ms Oms 760 ms 1500 ms response

A

ant.




Connectivity Analysis (EEG)

Cohen et al., 2013
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Advantages of tCS + EEG

 Understanding the role of brain oscillations in both motor and non-
motor regions, in both the healthy and pathological brain

Assembly A

*Measure both local and distant effects.

* Guide tCS intervention on the basis of and online/ottline monitoring
of brain states.

How can tCS + EEG be implemented?



tCS + EEG approaches

Resting or tCS Resting or
OFFLINE Event related (no EEG Event related
EEG EEG

recording)

Resting or EEG Resting or
ONLINE Event related recording Event related

43¢ during tCS EEG

EEG-Guided, Resting or tCS guided by Resting or
closed-loop Event related EEG Event related
system EEG i EEG



tCS and EEG: variables

Local/Network Effects

Closed Loog
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EEG-Guided tCS: Location

Faria et al., 2012
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EEG-Guided tCS: Stimulation Parameters (Frequency, phase,etc.)

Zahele et al., 2012

Frequency
Individual Alpha frequency

EEG-Guided

Frequenty (Hz)

* tACS on the occipital cortex at individual alpha frequency

* Resting EEG & increase in alpha in parieto-central electrodes, no effects on surrounding
frequencies



EEG-Guided tCS: Stimulation Parameters (Frequency, phase,etc.)

Vossen et al., 2015
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EEG-Guided tCS: Stimulation Parameters (Frequency, phase,etc.)

Neuling et al., 2012

Ph A
ase haanng nre-EEG detaction galechion nost-EEG
thrashold task | izsk & o-E0CS
3 min T imin 3 x T min Jmin
time

Causal relationship between phase and perception = .

Neuling et al., 2012: Used alpha-tDCS, the timing of the
stimuli was arranged relative to the a-tDCS to present
the stimuli in specific phase bins.

Perception: Detection thresholds were dependent on
the phase of oscillation entrained by alpha tDC5.

EEG rest: Alpha power was enhanced
after alpha tDCS
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Local/Network Effects

Closed Loog
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State dependency: Eyes Open vs. Eyes Closed

Neuling et al., 2013
Experiment 1: Eyes Closed Experiment 2: Eyes Open
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i REVIEW ARTICLE
SYSTEMS NEUROSCIENCE o 10K ey 2018 A%

State-Trait dependency

Not all brains are created equal: the relevance of individual
differences in responsiveness to transcranial electrical
stimulation

Beatrix Krause* and Roi Cohen Kadosh

Department of Experimental Psychology, University of Oxford, Oxford, UK

Neurotrasmitters balance

Head-tissue morphology

age

S

Variability in
the response to

tCS

Circadian rhythm

Cortical “excitability”

habituation to stimuli =2
Flip the effect
Silvanto et al., 2007

Fatigue, wakefulness, attention,

can

Hormonal levels




Choose Parameters

Input Location

) Scalp landmark
Sratonienly 'E:-iin atlas
RSt MR, D7)
MR
Functionally
guided o

tES Input Parameters

! Standard
|
RO Guided
B Standard
b sl EEG Guided

Guided with respect to a brain state

Closed Loog
Feedback

Controlled Brain State
Developmental

« anesthesia, sleep
* wakeful resting

* passive/active sensory processing
* motor movement

* cognitive performance

Behavioral

= cusrent and history of dynamics

dynamics * a preceding stimulus

* Msease duration, seventy, etc
*Intervention strategies

Local/Network Effects

* Selected sensors or sources
= All sensors (topography)
* All spurces (tomography)

EEG Output Measures

Analysis

Amplitude
&g, ERP, GMFA

Power of each frequency
eg., ERS/ERD

Power as a function of time
& frequency
e.g., ERSP

* Correlation

* Caherence

* Synchrony

* Phase-amplitude cross-
frequency coupling

= Directed-transfer function
s Partial directed cohersnce

Mechanisms

Local or global
excitation/inhibition

Local or global
synchronization

Intrinsic properties
e.g., Resonant
frequency

Functional connectivity
e.g., Amplitude,
frequency and phase
coupling between two
orf more signals

Directed functional

cannectivity
e.g., Information flow

* Relative to input time
* Relative to a brain state




Closed-Loop Diagram

recording

analyze ~ COMputation

closed-loop
brain state-dependent

measure
wioful/12b6b1]

- modulate 3 :
brain state stimulation



Closed-Loop Studies in Animal

A Berenyi et al., 2012

CSD  Bandpass Spike  Waveform  Stimulus
filter detection generator isolator
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* Rodent model of generalized

epilepsy.
e Detection of interictal spikes
triggers tCS at 1Hz

U

Aborts the spike-wave

’ discharge burst
i f

CcsD

Filtered CSD
Spike
detection
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Closed-Loop Studies in human sleep

Clark et al., 2017

_ sleep stage
NREM sleep detection SWO phase

SWO detection/prediction

PFC slow tACS



Closed-Loop Studies in human sleep

Enhancing slow waves improves memory
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Sleep quality (Karolinska Sleep Diary)

Closed-Loop Studies in human sleep

p<0.05

Active

Sham



Local/Network Effects

Closed Loog
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Output Measures: Power/Amplitude - Local effects

Jacobson et al., 2012

* Anodal tDCS on right Inferior Frontal Gyrus, Cathode on OFC
e Offline approach, tDCS + task, EEG before/after

% 4 = == Sham ..

FC2 FC4 FCB FT8

Decrease in Theta power after tDCS



Output Measures: Power/Amplitude - Distant effect

Occipito-Parietal Electrodes...
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Output: Connectivity

e 10’ of anodal tDCS over M1 Polania et al., 2011
e Cathode on the contralateral Forehead
* 62 Channels EEG recording Before & After, Resting & Task

e Qutput > Connectivity metrics (Synchronization Likelihood) in directed and
undirected graphs, for each frequency band.

Task PRE — Task POST , High Gamma @ 60-90Hz
tDCS Increases connectivity between motor, premotor and suppl. motor areas.

Nose Nose
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Output: Connectivity

Polania et al., 2011

ACTIVITY DURING MOTOR TASK
I

O

t High-gamma (60-90Hz)

& = _
- tDCS ” Sham
|
5 (*)
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—
b
‘s
5 g 2-
E
.}
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i e
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* tDCS Increases connectivity between left motor, premotor and suppl. motor areas.

* tDCS Decreases interhemispheric connectivity in High-Gamma during task.



Other multimodal approaches?

*tCS + TMS-EMG

*tCS + EEG (Resting — ERPs)

*tCS + fMRI

*tCS + NIRS

e...tCS + TMS-EEG ?




TMS-EEG

TMS Pulse
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TMS evoked potential (TEP)
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TMS-EEG
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TMS-EEG

Santarnecchi et al. 2016, SPJ
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TMS-EEG to investigate local and distant tDCS effects

- 14 right-handed participants
- 0.75mA for 15’ (anodal tDCS) + Sham
- 60 Channels EEG

- Masking Noise for TMS click

Output: TMS-Evoked Potentials (TEP) as a cortical
activity/reactivity measure

Global Excitability Index: Global Mean Field Power (GFMP)
Local Excitability Index: Local Mean Field Power (LMFP) over
6 different clusters of electrodes, left/right Frontal-Temporal-
Parietal.

3 Time windows: 0-50ms, 50-100ms, 100-150ms

Romero Lauro et al., 2014
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TMS-EEG to investigate local and distant tDCS effects

Global Mean Field Potential

............... 1.8

E- NM
GMFP Post tDCS (15 min) ey

TI'|.+15 ! E 0-50ms
o o —

50-100ms

GMFP Pre tDCS
TMS
1

100-150ms

Fig. 2 — Panel A (upper row) shows the Grand Average of GMFF computed by averaging the GMFPs calculated for each subject
in the three experimental conditions (pre tDCS = blue trace + 5E; during tDCS = red trace + 5E; post tDC5 = green trace + 5E).
The lower row of Panel A represents the mean topographies computed in correspondence of the local maxima for each of
the three time windows (0—50 msec = light gray, 50-100 msec = gray, 100—150 msec = dark gray) across the 14 study
participants (see also Fig. 1). Panel B shows bar histograms representing the mean values + SE of the integrated GMFPF in the
three time windows of interest (0—50 msec = light gray, 50-100 msec = ash, 100—150 msec = graphite) for each

experimental condition.



TMS-EEG to investigate local and distant tDCS effects

Local Mean Field Potential as an index of distant effects
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Effects are (i) mostly in the 0-50ms window, which is expression of inter-
regional monosynaptic connections; (ii) exclusively in the POST tDCS

ONLINE tDCS = unclear
OFFLINE tDCS = more specific, network-based effects



Technical challenges

EEG-Guided, Resting or tCS gUIded by Resting or
closed-loop Event related Event related
system 33¢ recordmg EEG
Stimulation Artifact durlng EEG recording

SN

tDCS tACS
* Relatively easier, Available tools e Artifact is bigger and affects the EEG band of
(algorithm) to “clean” the data from .
Drifts interest (!).

e Specific filtering can be applied (reduces the

available spectrum)



EEG during tDCS

A Sehm et al., 2013
® EEG
0 wcs
C
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SEP: somatosensory evoked potential

3'd order Butterworth filter (1-250Hz) to eliminate tDCS
induced blurring of EEG response.
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EEG during tACS

Helfrich at al.,2014
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Moving Average + Principal Component Analysis to Capture and eliminate the artifact

(?)



e Understand of Motor and non-Motor

tCS effects

Time (ms)

e Capture Distant effects other than cortical

excitability (e.g. Power, Coherence, Connectivity)

e Guide tCS interventions (closed loop, etc.)

* Interact with complex dynamics (e.g. CFC, phase-

related processing)



Questions? Comments? Ideas? Feedback?

* dcappon@bidmc.harvard.edu

e davide.balos.cappon@gmail.com



mailto:dcappon@bidmc.harvard.edu

Eerenscnn Allen Center
For Noninvasive Brain stimulation

Thank you for your attention

dcappon@bidmc.harvard.edu
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